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Abstract
We analytically explore the scaling properties of a general class of nested
subgraphs in complex networks, which includes the K-core and the K-scaffold,
among others. We name such a class of subgraphs K-nested subgraphs
since they generate families of subgraphs such that . . . SK+1(G) ⊆ SK(G) ⊆
SK−1(G) . . .. Using the so-called configuration model it is shown that any
family of nested subgraphs over a network with diverging second moment and
finite first moment has infinite elements (i.e. lacking a percolation threshold).
Moreover, for a scale-free network with the above properties, we show that any
nested family of subgraphs is self-similar by looking at the degree distribution.
Both numerical simulations and real data are analyzed and display good
agreement with our theoretical predictions.

PACS numbers: 05.65.+b, 05.40.−a, 05.50.+q

1. Introduction

The internal organization of most complex systems displays some sort of nestedness associated
with some type of hierarchical organization. Such patterns can be detected by using appropriate
theoretical tools which help us in understanding the system’s structure in terms of a network
[1–7]. Furthermore, the structure of such communities can provide us with valuable
information about invariant properties and potential universals. In this work we will define a
general class of network substructures which we called the K-nested subgraph. Such a class
of subgraphs includes the K-core, the K-scaffold or the random deletion of nodes. But it also
includes any other substructure you can define, if a small set of probabilistic restrictions holds.
We develop a general, unified framework that enables us to study generic properties of such K-
nested subgraphs. As we should see, the most common class of real networks, with connectivity
patterns following a power-law distribution P(k) ∝ k−α, 2 > α > 3, has very interesting
properties when looking at subgraph nestedness. In this context, theoretical studies on the
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resilience of both K-cores [4, 8, 9] and K-scaffolds [6, 10] suggest that arbitrarily large scale-
free networks contain infinite, asymptotically self-similar, K-cores and K-scaffolds, indicating
that such subgraphs are highly robust against the random deletion of nodes. Metaphorically,
it has been suggested that the structure of complex nets is similar to a Russian doll [4].

These results are consistent with the mounting evidence indicating that scale-free networks
exhibit general self-similar properties [4, 11–14]. From the physical point of view, the
asymptotical invariance of the degree distribution of scale-free nets under nesting operations
is one of their most salient properties. At the theoretical level, the conservation of P(k) the
degree distribution implies self-similarity, as far as most of the properties of a random graph are
determined by its degree distribution [15]. Of course, real nets are not exactly random graphs,
but such an approach revealed surprisingly adequate to study real systems [16]. Furthermore,
self-similar properties and scaling laws might be an indication that such objects are organized
near criticality [17, 18].

In this work we generalize previous approaches, showing that any nested family of
subgraphs of a given scale-free network has an infinite percolation threshold, i.e., there is an
infinite set of Russian dolls for such networks. Moreover, it can be shown that such families
are self-similar. We develop such concepts under the framework of the so-called configuration
model [19], which works on an ensemble of arbitrarily large, sparse and uncorrelated graphs
with specific properties.

The remainder of this paper is organized as follows: first, we formally define the concept of
K-nested subgraph and show how the above-mentioned examples hold the required conditions.
Then, we derive the general percolation properties and the final generic form of an arbitrary
nested subgraph of a given net. From the developed formalism, we apply our results to specific
network topologies.

2. Nested subgraphs

Formally, a complex network is topologically described by a graph G(V , �) where V is the
set of nodes and � : V → V is the set of edges connecting the nodes of V . If P(k) is the
probability that a randomly chosen node is connected to k other nodes, then

〈k〉 =
∞∑
k

kP (k)〈k2〉 =
∞∑
k

k2P(k)

is the average connectivity of G and the second moment of the distribution, respectively.
We will say that S(A, �A) is an induced subgraph of G(V , �) if A ⊆ V and �A ⊆ �,

being �A a mapping �A : A → A. We can define many subgraphs from a given graph. Here
we are interested in a special set of subgraphs, hereafter K-nested subgraphs, which includes,
as special cases, the family of successive K-cores or K-scaffolds and the so-called ν̂-deletion
graph, obtained by deleting a fraction ν̂ of nodes. A K-nested family of subgraphs N is a
collection of subgraphs of a given graph G,N = {S1(G), S2(G), . . . , Si(G), . . .} such that

. . . SK+1(G) ⊆ SK(G) ⊆ SK−1(G) . . . (1)

For every family of K-nested subgraphs we associate a nesting function ϕK(k), namely the
probability for a randomly chosen node with degree k to belong to SK . If U ⊆ R is a set that
depends on the nature of the nesting, ϕK(k) is such that

ϕK(k) : U × N → [0, 1]. (2)

It is easy to see that for a function to be a nesting function, it has to fulfil the following logical
conditions:
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(ϕK(k′) > ϕK(k)) ⇒ (k′ > k), (3)

(ϕK ′(k) > ϕK(k)) ⇒ (K ′ < K), (4)

(∀ϕK)(∃λSK
∈ (0, 1])|( lim

k→∞
ϕK(k)) = λSK

), (5)

where λSK
is a scalar whose value will depend on the explicit form of SK . In short, ϕK(k) is a

non-decreasing function on k (equation (3)) and a non-increasing function on K (equation (4)).
Note that such a function implies that all the nodes satisfying the conditions are taken into
account: our subgraphs are maximal under the conditions imposed by ϕK . Furthermore, note
that, for a fixed K,ϕK(k) has a horizontal asymptote at ϕK(k) = λSK

(equation (5)). Thus

lim
k→∞

(ϕK(k + 1) − ϕK(k)) = 0. (6)

From (3)–(6) we can see that, for a fixed K, and 0 < δ < 1 there exists a k∗ such that

(∀ki, kj > k∗) ⇒ (||ϕK(ki) − ϕK(kj )|| < δ), (7)

and we can conclude that the sequence (ϕK(k)) = ϕK(1), ϕK(2), . . . , ϕK(i), . . . is a Cauchy
sequence. As we should see, this property will be useful in the following sections. Let us now
explore some relevant nesting functions.

(a) K-core subgraphs. The K-core is the largest induced subgraph whose minimal connectivity
is K (see figures 1(b) and 2(b)). Intuitively, it is clear that a collection of K-cores from
a given graph G defines a nested family of subgraphs. Within the configuration model,
we can informally identify the probability for a given node of G to belong to the giant
K-core with the probability of belonging to an infinite (K − 1)-ary subtree of G [4, 9, 20].
Therefore, the probability for a given node to belong to the K-core equals the probability
of belonging to an infinite (K − 1)-ary subtree. Let R be the probability that a given
end of an edge is not the root of an infinite (K − 1)-ary subtree. The associated nesting
function for the K-core is ϕK(k) = 0, if k < K and

ϕK(k) =
k∑

i=K

(
k

i

)
Rk−i (1 − R)i (8)

otherwise. It is straightforward to check that such a function follows (3)–(5).
(b) K-scaffold subgraphs. The K-scaffold of a given graph is the subgraph obtained by

choosing all the nodes whose k � K and the nodes that, despite their connectivity being
k < K , they are connected to a node e′ whose k′ � K [6, 10] (see figures 1(a) and 2(c)).
The nesting function for the K-scaffold is ϕK(k) = 1, if k � K and

ϕK(k) = 1 −
(∑

k′<K

k′P(k′)
〈k〉

)k

(9)

otherwise. Note that, for both the K-nested families of K-scaffolds and K-cores, λSK
= 1.

A variety of subgraphs can be defined from the K-scaffold, such as the naked K-scaffold
(a subgraph obtained by cutting all the nodes whose degree is k = 1 in the K-scaffold).

(c) Random deletion of nodes. Suppose we delete a fraction ν̂ = 1 − ν of nodes from our
graph. Such an operation can also be formalized in terms of nesting functions. For the
sake of simplicity, if we perform a random deletion of a fraction of nodes from G, we will
indicate the nesting function and the subgraphs as ϕν and Sν , respectively. The associated
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S  (G)K

S  (G)K

S  (G)

G

(a)

(c)

(b)

G

G

ν

Figure 1. Some subgraphs samples that enable us to define a nested family of subgraphs. In
the original graph (left) we shadowed the nodes that disappear under the operation of SK . In the
right-hand side, we display the giant component of the obtained graph, SK . We find the K-scaffold,
(K = 3) (a). The K-scaffold is the subgraph obtained by choosing all the nodes whose connectivity
is equal or higher than K and all the nodes connected to them. Such a subgraph enables us to study
the fundamental hub-connector structure of the complex networks. (b) The K-core (K = 3), the
largest induced subgraph whose minimal connectivity is equal to K. (c) A subgraph obtained by
randomly deleting a fraction (̂ν = 5/21) of nodes (commonly referred by the literature as random
failures.)

nesting function is, simply,

(∀k)(ϕν(k) = ν). (10)

For mathematical purposes, let us introduce an additional class of subgraphs, SKγ , of a
given subgraph SK . The main feature of such subgraphs is that SKγ ⊆ SK . We name such
subgraphs minor subgraphs of SK . To characterize such subgraphs, we say that γK(k)

is a minor nesting function of ϕK(k) if (γK(k) < ϕK(k)) for all k. Given an arbitrary
ϕK(k), we can build a minor nesting function as follows: let k′ be the minimum k such
that ϕK(k′) = 0 (it could be k′ = 1). Then find an ε > 0 such that ε < ϕK(k′). Thus

γK(k) =
{

0 if k < k′

ε if k � k′.
(11)

This trivial way to define a minor subgraph from a given subgraph SK is enough, since
both γK(k) and ϕK(k) verify (3)–(5). Moreover, it is clear that4 (SKγ ⊆ SK) for all K.

4 Let us suppose a graph G and its two subgraphs, Sν, Sν′ , obtained by deleting at random ν̂ = 1 − ν and ν̂′ = 1 − ν′,
with ν′ > ν. Clearly, we cannot conclude that Sν is an induced subgraph of Sν′ . But it is true that the properties of
Sν will be, with high probability, the properties of some induced subgraph of Sν′ obtained by deleting at random ν̂

nodes of G. Furthermore, it can be shown that the probability of finding a diverging value decays exponentially with
the size of the system—recall that we are working with an ensemble formalism.
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(a) (b)

(c)

Figure 2. A complex network with broad distribution of links (a) and two nested subgraphs:
(b) Its K-core (K = 4) and (c) the corresponding K-scaffold (K = 20).

3. Percolation of nested subgraphs

Previous to determining the specific statistical properties of the obtained subgraphs, we are
interested in knowing whether there is a giant component in SK , i.e., if the operation of nesting
breaks (or not) the initial graph G into many small components. We consider first the general
problem.

Let us define the generating functions for an arbitrary K-nested subgraph with the
associated nesting function ϕK(k) defined on G with arbitrary (but smooth) degree distribution
P(k):

F0(z) =
∞∑
k

P (k)ϕK(k)zk, (12)

F1(z) = 1

〈k〉
∞∑
k

kP (k)ϕK(k)zk−1. (13)

The averages—i.e. the values at z = 1 of equations (5) and (6)— are, respectively, µ ≡ F0(1)

and ω ≡ F1(1). Here, µ is the fraction of nodes from G that belong to SK . Similarly, ω is
the relation among 〈k〉 and the average number of nodes from V reachable after computing
the nested subgraph. The generating function for the size of components other than the giant
component, which can be reached from a randomly chosen node is

H1(z) = 1 − ω + zF1(H1(z)) (14)

and the generating function for the size of the component to which a randomly chosen node
belongs is [16, 21]

H0(z) = 1 − µ + zF0(H1(z)), (15)

thus, the average component size other than the giant component is

〈s〉 = H ′
0(1) = µ + F ′

0(1)H ′
1(1). (16)

5



J. Phys. A: Math. Theor. 41 (2008) 385003 B Corominas-Murtra et al

If we compute the derivative, it is straightforward to see that it leads to a singularity when
F ′

1(1) = 1. Thus, if

F ′
1(1) = 1

〈k〉
∑

k

k(k − 1)ϕK(k)P (k) (17)

to ensure the presence of a giant SK , the following inequality has to hold:∑
k

k(k − 2)P (k) >
∑

k

k(k − 1)̂ϕK(k)P (k), (18)

where ϕ̂K(k) = 1 − ϕK(k). This can be seen as the natural extension of the Molloy and Reed
criterion [22] for any nested subgraph SK , with the associated nesting function ϕK(k). A more
compact expression of such a criterion is∑

k

k2ϕK(k)P (k) − (1 + ω)〈k〉 > 0. (19)

4. Degree distribution of SK

The following step is to compute the degree distribution of the nested subgraphs, PSK
(k). The

key question is finding the average number of nodes a given node will reach, if it survived to
the computation of SK . Taking into account the set of all nodes of G, the average connectivity
will decrease a factor ω ≡ F1(1) = 1/〈k〉 × ∑

k kϕK(k)P (k). Clearly, the probability for a
surviving node with connectivity k in G to display connectivity k′ � k in SK, P(k → k′) is

P(k → k′) =
(

k

k′

)
ωk′

(1 − ω)k−k′
. (20)

And, in the absence of correlations, a node with connectivity k in G now will survive with a
probability ϕK(k) and it will be connected, on average, to ωk nodes. If we take into account
all the possible contributions of the nodes of G to the abundance of nodes with certain degree
k in SK , we have

PSK
(k) = 1

µ

∞∑
i�k

ϕK(i)

(
i

k

)
ωk(1 − ω)i−kP (i), (21)

where PSK
(k) is the probability of finding a node of degree k after the computation of SK .

Note that the factor 1
µ

normalizes PSK
(k). Clearly, if we define δ(ω, λSK

) as

δ(ω, λSK
) ≡ 1

µ

∞∑
i�k

(λSK
− ϕK(i))

(
i

k

)
ωk(1 − ω)i−kP (i).

We can rewrite PSK
as

PSK
(k) = λSK

µ

∞∑
i�k

(
i

k

)
ωk(1 − ω)i−kP (i) − δ(ω, λSK

). (22)

But note that, due to relation (7), for large k’s:

λSK

µ

∞∑
i�k

(
i

k

)
ωk(1 − ω)i−kP (i) � δ(ω, λSK

). (23)

Thus PSK
is reduced to

PSK
(k) ≈ λSK

µ

∞∑
i�k

(
i

k

)
ωk(1 − ω)i−kP (i). (24)
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Figure 3. The simplest family of nested subgraphs, obtained by removing all nodes whose
connectivity is less than K: ϕK(k) = 
(K, k), where 
(K, k) = 1 if k � K and 0 otherwise.
(a) Numerical computation of the size of the giant component p∞ = 1 − H0(1) = µ − F0(u)

where u is the first, non-trivial solution of u = 1 − ω + F1(u), for ϕK(k) = 
(K, k). This curve
corresponds to a scale-free network with α ≈ 2.15. No specific scale is identified. The sharp
decay for the large K values can be attributed to the finite size of the system. (In this simulation,
we assumed kmax ≈ 5000.) (b) The same computation over an Erdös Rényi graph with 〈k〉 = 30
displays a clear characteristic scale where the giant component is completely eliminated.

Let us rewrite equation (24) in order to extract analytical results. If the first generating function
of the degree distribution of G, without taking into account the nesting operation, is

G0(z) =
∞∑
k

P (k)zk (25)

it is straightforward that

dk

dzk
G0(z) =

∑
i�k

i!

(i − k)!
P(k)zi−k. (26)

Thus, we can rewrite the degree distribution (24) in terms of the derivatives of G0(z):

PSK
(k) ≈ λSK

µ

ωk

k!

dk

dzk
G0(z)

∣∣∣∣
z=1−ω

. (27)

In the following, we will apply our results to standard topologies of network theory: the Erdös
Rényi graphs and the power-law graphs.

5. Erdös Rényi graphs

In the Erdös Rényi (E-R) graph,

P(k) = 〈k〉k e〈k〉

k!
(28)

and 〈k2〉 = 〈k〉2. To study specifical percolation properties, we need to know the specific shape
of ϕK(k). In (figure 3(b)) we approached numerically the size of the giant component in an
E-R graph where a successive nesting operation is performed. A clear threshold is observed,
displaying a critical point where the giant connected component is completely eliminated.
The special case of ϕK(k) = ν recovers the well-known percolation condition for E-R graphs
under random damage, 〈k〉 > (1 + ν)/ν. The predictions for the degree distribution are more

7
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general and accurate. Indeed, the expression for G0(z) in E-R graphs is GER
0 (z) = e〈k〉(z−1).

Thus, if, as we defined above, µ ≡ F0(1):

P ER
SK

(k) ≈ λSK

µ

〈ωk〉k e〈ωk〉

k!
. (29)

This implies that, for large k′s, the nesting operation over an E-R graph results in an E-R graph
but with a factor ω correcting the mean, whose value goes from 〈k〉 → ω〈k〉.

6. Scale-free nets

Let us assume a scale-free network with

P(k) ∝ k−α, (30)

with the scaling exponent 2 < α < 3. We will show that, at the thermodynamic limit, any
family of subgraphs has infinite subgraphs. This has separately been shown for the K-core
[4, 9] and the K-scaffold [6]. One of the main characteristics of such nets is that 〈k2〉 → ∞,
and that 〈k〉 does not diverge with network size.

What we should prove is that, under these conditions, relation (19) holds for all K’s. In
other words, there is no characteristic scale for the substructure generated by ϕK(k). Indeed,
our subgraphs need to fulfil the inequality∑

k

k2ϕK(k)P (k) − (1 + ω)〈k〉 > 0. (31)

But we cannot work directly with an arbitrary nesting function ϕK . Thus, to prove the above
claim, we build a minor nesting function γK(k) of our ϕK(k), as defined in (11), assuming k′

as the smallest k such that ϕK(k) > 0. Thus, if ωγ ≡ F
γ

1 (1) has the form

ωγ = ε

(
1 −

∑
k<k′

kP (k)

〈k〉

)
≡ ε′, (32)

the corresponding percolation condition for SKγ is

ε
∑
k�k′

k2P(k) − (1 + ε′)〈k〉 > 0.

But since 〈k2〉 diverges, we will have ε
∑

k�k′ k2P(k) → ∞ and condition (19) always
holds, provided that 〈k〉 is finite. This implies that percolation of any nested subgraph of an
arbitrarily large scale-free network is guaranteed, as far as SKγ

⊆ SK . Numerical simulations
(see (figure 3(a))) of the size of the giant component display no critical scale for the emergence
(elimination) of the giant connected component.

The above mathematical machinery will lead us to demonstrate that our families of nested
subgraphs exhibit invariance in degree distribution. If we put the distribution P(k) = C−1k−α ,
(C = ζ(α)), equation (27) becomes

PSK
(k) ≈ λSK

ωk

k!

dk

dzk
GSF

0 (z)

∣∣∣∣
z=1−ω

. (33)

Thus the problem lies in finding the kth derivative of GSF
0 (z). The computation is slightly

more complex than the E-R graphs, and involves some approaches. First, we compute the
generating function for a scale-free net P(k) = C−1k−α whose exponent lies between 2 and
3,GSF

0 (z):

GSF
0 (z) = C−1Liα(z)

= C−1 z

�(α)

∫ ∞

0
dt

tα−1

et − z
,

8
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where Liα(z) = ∑∞
k

zk

kα is the polylogarithm function and, to obtain the last step, we used
its integral form. But, actually, we are interested in the derivatives of GSF

0 (z). If we assume
z → 1− the kth derivative of GSF

0 (z) can be approached by

dk

dzk
GSF

0 (z) ≈ C−1 k!

�(α)

∫ ∞

0
dt

tα−1

(et − z)k+1

≈ C−1 k!

�(α)

∫ ∞

0
dt

tα−1

(t + τ)k+1

= C−1 k!τα−1−k

�(α)

∫ ∞

0
dy

yα−1

(y + 1)k+1
,

where, in the first approach, we used the fact that, if z → 1, we are near a singularity when
t → 0. Thus, the dominant terms of the sum will be those close to t = 0. This enables us to
rewrite et ≈ 1 + t + O(t2). In the last step, we made the coordinate change τ = 1 − z and,
then, t = yτ . If we evaluate such an expression at z = 1 − ω, with ω small enough:

dk

dzk
GSF

0 (z)

∣∣∣∣
z=1−ω

≈ C−1 k!ωα−1−k

�(α)
Jk+1,α+1,

where Jk+1,α+1 is defined as

Jk+1,α+1 ≡
∫ ∞

0
dy

yα−1

(y + 1)k+1
= �(α)�(k − α + 1)

k!(k − α + 2)
.

If we check the behavior of Jk+1,α+1 for large k’s, we see that

Jk+1,α+1 ≈ �(α)

kα
. (34)

Thus, if we introduce the above results into the definition of PSK
:

PSK
(k) ≈ λSK

µ

ωk

k!

dk

dzk
GSF

0 (z)

∣∣∣∣
z=1−ω

= C−1 λSK

µ
ωα−1k−α, (35)

which can be rewritten in the standard form when describing self-similar objects:

PSK
(k) ≈ ρ−αP (k) = P(ρk), (36)

where ρ is a constant that, interestingly, depends on both the scaling exponent α and the nature
of the nesting, namely:

ρ =
(

µ

λSK
ω(α−1)

) 1
α

. (37)

Note that the invariance in the degree distribution is also valid for scale-free nets with α > 3.
However, in this case, the percolation inequality (19) is not generally satisfied.

7. Discussion

Many interacting systems found in nature display a scale-free topology, P(k) ∝ k−α , with
2 < α < 3. In this paper, we have shown that the assumptions of the configuration model
are enough to explain many of the scaling and self-similar properties of the observed nested
subgraph nets. The resulting prediction (36) reveals that, under no correlations, we should
expect invariance in degree distributions of nested subgraphs to occur. This is what we observe

9
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Figure 4. Analyzing the web obtained from the O Wilde’s novel The portrait of Dorian Gray.
The network was built up by tracing an arc between two adjacent words, if they appear one after
the other within the same sentence. The obtained graph has N = 5696 nodes and displays a scale-
free distribution P(k) ∝ k−α (gray circles), with an exponential cut-off at high connectivities
(k > 1000). In this graph, α ≈ 2.15 and 〈k〉 ≈ 8.814. We plot the cumulative frequency for the
K-cores, 4 � K � 11 (left). Despite the strong connectivity requirements imposed for the K-core,
the distribution behaves as a statistical invariant. The same is observed with successive naked
K-scaffold subgraphs, K = 14, 16, 18, 20, 22, 30, 40 (right). The naked K-scaffold subgraph is
obtained from the K-scaffold but deleting all the nodes with k < K that are connected only to one
node with k′ � K .

in the analysis of real nets (see figure 4). Indeed, in the analysis of the degree frequency we
see that, despite the finite size of our system, the degree frequency acts as an invariant, only
modulated by a scaling factor. These results contrast with the previous work on sampled
subnets obtained from scale-free graphs [23]. Although it is true that arbitrary subsets of
nodes might not display invariance, our families of nested subgraphs are defined in such a
way that our results are expected to hold. Further work should address the impact of the self-
similarity in the functional aspects of the net as well as a broader study of nested subgraphs
involving different types of real networks.
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